【学术前沿动态】新冠肺炎专题:非生物医学类外文论文分析

10.07.2020  19:10

信息整理:图书馆

新冠肺炎作为当前最受关注的研究主题,相关研究成果快速增长。通过最近半个月(6月17日-7月3日)的持续追踪,Web of Science中相关论文数以日均200多篇的速度激增,总量达到了11740篇。这一研究热点不仅得到了全球生物医学界研究者的持续重视,也同样吸引了其他学科领域的科研人员。因此,生物医学领域之外,究竟是什么群体在从事相关研究?主要产出了哪些科研成果?国内学者又有什么样的表现?本期快讯为你揭晓!

此次仍以SCIE/SSCI/AHCI数据库为文献来源,检出2020年新冠肺炎主题相关文献,应用数据库平台的结果分析功能,排除掉“生命科学与生物医学”大类下的全部研究方向及“多学科科学”学科类目下的所有生物医学类文献,最后得到非生物医学类相关文献755篇,其文献类型主要为Article(61.99%)、Editorial Material(29.80%),其中35.50%的论文采取“Early Access”的方式出版。

表1揭示出文献类型为Article和Review的478篇论文(以下简称AR论文)的TOP产出国家和机构。中国发文量全球第二,复旦大学的发文量进入全球前十。

表1 非生物医学领域新冠肺炎主题发文TOP10国家和机构

序号

国家

论文数

占比 (%)

学术机构

论文数

占比 (%)

1

美国

137

28.66%

伦敦大学

15

3.14%

2

中国

72

15.06%

佛罗里达州立大学

10

2.09%

3

英国

67

14.02%

哈佛大学

9

1.88%

4

德国

49

10.25%

伦敦大学学院

8

1.67%

5

加拿大

31

6.49%

加州大学

8

1.67%

6

意大利

29

6.07%

牛津大学

8

1.67%

7

澳大利亚

23

4.81%

复旦大学

7

1.46%

8

印度

20

4.18%

法国国家科学研究中心

6

1.26%

9

西班牙

19

3.98%

英国诺森比亚大学

6

1.26%

10

荷兰

15

3.14%

新西兰坎特伯雷大学

6

1.26%

 

 

表2为全球及中国相关论文的主要来源期刊。除PLOS ONE、JOURNAL OF LOSS TRAUMA两种期刊外,其余期刊二者没有重复。

表2 非生物医学领域新冠肺炎主题发文最多的期刊

序号

全球发文学术期刊

论文数

占比 (%)

国内发文学术期刊

论文数

占比 (%)

1

TOURISM   GEOGRAPHIES

26 

5.44%

PLOS ONE  

12.77%

2

SURVEY   RESEARCH METHODS

23 

4.81%

ACTA   PHYSICA SINICA

8.51%

3

CHAOS   SOLITONS FRACTALS

19 

3.98%

ASIA   EUROPE JOURNAL

4.26%

4

PLOS ONE  

16 

3.35%

CURRENT   ISSUES IN TOURISM

4.26%

5

JOURNAL   OF RISK RESEARCH

14 

2.93%

JOURNAL   OF LOSS TRAUMA

4.26%

6

TIJDSCHRIFT   VOOR ECONOMISCHE EN SOCIALE GEOGRAFIE

14 

2.93%

NONLINEAR   DYNAMICS

4.26%

7

AMERICAN   JOURNAL OF CRIMINAL JUSTICE

12 

2.51%

 

 

 

8

GENDER   WORK AND ORGANIZATION

12 

2.51%

 

 

 

9

JOURNAL   OF LOSS TRAUMA

10 

2.09%

 

 

 

10

ACS NANO  

1.88%

 

 

 

 

表3反映出全球和中国AR论文涉及的研究领域,全球集中在经济、物理、心理学、化学、工程、数学、计算机科学、以及科学技术和社会科学的相关领域;国内则主要涉及物理、工程、计算机、数学、心理学等领域。

表3 非生物医学领域新冠肺炎主题发文TOP10研究领域

序号

全球发文研究领域

论文数

占比 (%)

国内发文研究领域

论文数

占比 (%)

1

BUSINESS   ECONOMICS

61 

12.76%

PHYSICS

19.15%

2

SCIENCE   TECHNOLOGY OTHER TOPICS

57 

11.93%

SCIENCE   TECHNOLOGY OTHER TOPICS

17.02%

3

SOCIAL   SCIENCES OTHER TOPICS

55 

11.51%

ENGINEERING  

14.89%

4

PHYSICS

49 

10.25%

COMPUTER   SCIENCE

12.77%

5

PSYCHOLOGY  

47 

9.83%

MATHEMATICS  

10.64%

6

CHEMISTRY  

42 

8.79%

PSYCHOLOGY  

10.64%

7

ENGINEERING  

39 

8.16%

BUSINESS   ECONOMICS

6.38%

8

MATHEMATICS  

32 

6.70%

INTERNATIONAL   RELATIONS

6.38%

9

COMPUTER   SCIENCE

27 

5.65%

SOCIAL   SCIENCES OTHER TOPICS

6.38%

10

MATHEMATICAL   METHODS IN SOCIAL SCIENCES

23 

4.81%

CHEMISTRY  

4.26%

 

下图为根据478篇AR论文的英文关键词生成的热点图,表4为部分高频词的统计值。

表4非生物医学领域新冠肺炎主题论文热点关键词

序号

关键词

词频

序号

关键词

词频

1

COVID-19

245

33

PUBLIC HEALTH

6

2

CORONAVIRUS

62

34

PREVALENCE

6

3

PANDEMIC

42

35

PERSONAL PROTECTIVE   EQUIPMENT

6

4

SARS-COV-2

21

36

PERCEPTIONS

6

5

SARS

20

37

PANDEMICS

6

6

RISK

16

38

MACHINE LEARNING

6

7

IMPACT

14

39

FACEBOOK

6

8

EPIDEMIC

14

40

DEPRESSION

6

9

DYNAMICS

14

41

2019-NCOV

6

10

HEALTH

13

42

WORK

5

11

RESILIENCE

12

43

VULNERABILITY

5

12

SOCIAL MEDIA

11

44

UNCERTAINTY

5

13

CHINA

11

45

SYSTEMS

5

14

OUTBREAK

10

46

SUSTAINABLE TOURISM

5

15

MANAGEMENT

10

47

SURVEILLANCE

5

16

CRISIS

10

48

STUDENTS

5

17

PREDICTION

9

49

STRESS

5

18

POLICY

9

50

SCIENCE

5

19

GENDER

9

51

RISK COMMUNICATION

5

20

COVID-19 PANDEMIC

9

52

NOVEL CORONAVIRUS

5

21

ANXIETY

9

53

MODELS

5

22

TRUST

8

54

MODEL

5

23

INFORMATION

8

55

LEADERSHIP

5

24

INFLUENZA

8

56

INTERNET

5

25

DESIGN

8

57

HOPE

5

26

TECHNOLOGY

7

58

GLOBALIZATION

5

27

SIMULATION

7

59

EPIDEMIC MODEL

5

28

PERFORMANCE

7

60

DOCKING

5

29

KNOWLEDGE

7

61

DISEASE

5

30

CARE

7

62

CRISIS MANAGEMENT

5

31

TOURISM

6

63

CORONAVIRUSES

5

32

SUSTAINABILITY

6

64

COMMUNITY

5



经统计,以中国大陆机构为第一完成单位的论文有47篇,涉及40多所大学及研究机构。其中,四川大学发表3篇,南京大学、复旦大学、西安交通大学、电子科技大学、第二军医大学和北京邮电大学6所大学,均各自发表了2篇相关文献。相关论文主要关注新冠肺炎疫情对医护人员、学生群体及社会公众的心理健康影响,特殊时期的国际关系,应用计算机建模对疫情发展进行预测和数据分析,以及探讨疫情相关的物理学特征等研究内容。论文大量采用案例分析、网络调研和实证研究的方法,以多维的研究视角,涉及城市研究、心理学、经济、政治、信息传播、数学、物理、化学、计算机等众多学科领域。以下提供国内学者发表的47篇相关文献信息,其中包括我校信息管理学院发表的一篇JCR一区论文(第39篇)。

 

1.Zeng Z, Chen P, Lew A A. From high-touch to high-tech: COVID-19 drives robotics adoption[J]. TOURISM GEOGRAPHIES.

中文标题:从高接触到高科技:新冠肺炎推动机器人技术的普及

全文链接: https://doi.org/10.1080/14616688.2020.1762118

 

2.Mao Y, He J, Morrison A M, et al. Effects of tourism CSR on employee psychological capital in the COVID-19 crisis: from the perspective of conservation of resources theory[J]. CURRENT ISSUES IN TOURISM.

中文标题:从资源保存理论视角看新冠疫情危机下旅游企业社会责任感对员工心理资本的影响

全文链接: https://doi.org/10.1080/13683500.2020.1770706

 

3.Chen H, Huang X, Li Z. A content analysis of Chinese news coverage on COVID-19 and tourism[J]. CURRENT ISSUES IN TOURISM.

中文标题:针对中国关于新冠肺炎和旅游业新闻报道的内容分析

全文链接: https://doi.org/10.1080/13683500.2020.1763269

 

4.Wang H, Xia Q, Xiong Z, et al. The psychological distress and coping styles in the early stages of the 2019 coronavirus disease (COVID-19) epidemic in the general mainland Chinese population: A web-based survey[J]. PLOS ONE. 2020, 15(e02334105).

中文标题:中国大陆普通人群在新冠肺炎流行初期的心理困扰和应对方式

全文链接: https://doi.org/10.1371/journal.pone.0233410

 

5.Gao J, Zheng P, Jia Y, et al. Mental health problems and social media exposure during COVID-19 outbreak[J]. PLOS ONE. 2020, 15(e02319244).

中文标题:新冠肺炎暴发期间的心理健康问题和社交媒体的使用

全文链接: https://doi.org/10.1371/journal.pone.0231924

 

6.Zhou Y, He Y, Yang H, et al. Development and validation a nomogram for predicting the risk of severe COVID-19: A multi-center study in Sichuan, China[J]. PLOS ONE. 2020, 15(e02333285).

中文标题:严重新冠肺炎风险预测列线图的开发和验证:四川的一项多中心研究

全文链接: https://doi.org/10.1371/journal.pone.0233328

 

7.Xing J, Sun N, Xu J, et al. Study of the mental health status of medical personnel dealing with new coronavirus pneumonia[J]. PLOS ONE. 2020, 15(e02331455).

中文标题:新冠肺炎医务人员心理健康状况的研究

全文链接: https://doi.org/10.1371/journal.pone.0233145

 

8.Xu B, Gutierrez B, Mekaru S, et al. Epidemiological data from the COVID-19 outbreak, real-time case information[J]. SCIENTIFIC DATA. 2020, 7(1061).

中文标题:新型冠状病毒肺炎疫情的流行病学数据,实时病例信息

全文链接: https://doi.org/10.1038/s41597-020-0448-0

 

9.Hou T, Zhang T, Cai W, et al. Social support and mental health among health care workers during Coronavirus Disease 2019 outbreak: A moderated mediation model[J]. PLOS ONE. 2020, 15(e02338315).

中文标题:新冠肺炎疫情暴发期间医护人员的社会支持和心理健康:一个有调节的中介模型

全文链接: https://doi.org/10.1371/journal.pone.0233831

 

10.Yin F, Xia X, Song N, et al. Quantify the role of superspreaders -opinion leaders- on COVID-19 information propagation in the Chinese Sina-microblog[J]. PLOS ONE. 2020, 15(e02340236).

中文标题:量化分析超级信息传播者(意见领袖)对新冠信息在新浪微博中传播的作用

全文链接: https://doi.org/10.1371/journal.pone.0234023

 

11.Tian H, Liu Y, Li Y, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. SCIENCE. 2020, 368(6491SI): 638.

中文标题:关于中国在新冠肺炎疫情前50天的传播控制措施的调查

全文链接: https://doi.org/10.1126/science.abb6105

 

12.Chen Q, Min C, Zhang W, et al. Unpacking the black box: How to promote citizen engagement through government social media during the COVID-19 crisis[J]. COMPUTERS IN HUMAN BEHAVIOR. 2020, 110(UNSP 106380).

中文标题:打开黑匣子:如何在新冠疫情期间通过政府社交媒体促进公民参与

全文链接: https://doi.org/10.1016/j.chb.2020.106380

 

13.Yin Q, Sun Z, Liu T, et al. Posttraumatic stress symptoms of health care workers during the corona virus disease 2019[J]. CLINICAL PSYCHOLOGY & PSYCHOTHERAPY. 2020, 27(3): 384-395.

中文标题:新冠肺炎疫情中医护人员的创伤后应激症状

全文链接: https://doi.org/10.1002/cpp.2477

 

14.Zhao Y, An Y, Tan X, et al. Mental Health and Its Influencing Factors among Self-Isolating Ordinary Citizens during the Beginning Epidemic of COVID-19[J]. JOURNAL OF LOSS & TRAUMA.

中文标题:新冠肺炎流行初期自我隔离的普通公民的心理健康及其影响因素

全文链接: https://doi.org/10.1080/15325024.2020.1761592

 

15.Wang C, Zhao H. The Impact of COVID-19 on Anxiety in Chinese University Students[J]. FRONTIERS IN PSYCHOLOGY. 2020, 11(1168).

中文标题:新型冠状病毒肺炎对中国大学生焦虑程度的影响

全文链接: https://doi.org/10.3389/fpsyg.2020.01168

 

16.Talidong K J B, Toquero C M D. Philippine Teachers' Practices to Deal with Anxiety amid COVID-19[J]. JOURNAL OF LOSS & TRAUMA.

中文标题:菲律宾教师在新冠疫情中应对焦虑的实际行动

全文链接: https://doi.org/10.1080/15325024.2020.1759225

 

17.Li J, Feng H, Wei B, et al. Approximate method to evaluate the regional control efficacy of COVID-19[J]. ACTA PHYSICA SINICA. 2020, 69(10020110).

中文标题:评估新型冠状病毒地区防控效果的一种近似方法

全文链接: https://doi.org/10.7498/aps.69.20200441

 

18.Cong W, Jie Y, Xu W, et al. Analysis on early spatiotemporal transmission characteristics of COVID-19[J]. ACTA PHYSICA SINICA. 2020, 69(0807018).

中文标题:新型冠状病毒肺炎早期时空传播特征分析

全文链接: http://wulixb.iphy.ac.cn/article/doi/10.7498/aps.69.20200285

 


19.Yang Z, Zhao Y, Zang Y, et al. Rapid Structure-Based Screening Informs Potential Agents for Coronavirus Disease (COVID-19) Outbreak*[J]. CHINESE PHYSICS LETTERS. 2020, 37(0587015).

中文标题:通过基于结构的快速筛选寻找对抗新型冠状病毒肺炎暴发的潜在制剂

全文链接: https://doi.org/10.1088/0256-307X/37/5/058701

 

20.Lu C. Channels' Confirmation and Predictions' Confirmation: From the Medical Test to the Raven Paradox[J]. ENTROPY. 2020, 22(3844).

中文标题:信道确证与预测确证:从医学测试到乌鸦悖论

全文链接: https://doi.org/10.3390/e22040384

 

21.Li Y, Zhao S, Lou Y, et al. Epidemiological parameters and models of coronavirus disease 2019[J]. ACTA PHYSICA SINICA. 2020, 69(0902029).

中文标题:新型冠状病毒肺炎的流行病学参数与模型

全文链接: https://doi.org/10.7498/aps.69.20200389

 

22.Cao W, Liu X, Han Z, et al. Statistical analysis and autoregressive modeling of confirmed coronavirus disease 2019 epidemic cases[J]. ACTA PHYSICA SINICA. 2020, 69(0902039).

中文标题:新型冠状病毒肺炎疫情确诊病例的统计分析及自回归建模

全文链接: https://doi.org/10.7498/aps.69.20200503

 

23.Feng G, Liu L, Cui W, et al. Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation*[J]. CHINESE PHYSICS B. 2020, 29(0487034).

中文标题:电子辐照新型冠状病毒的蒙特卡罗模拟研究

全文链接: https://doi.org/10.1088/1674-1056/ab7dac

 

24.Chen J, Fu M C, Zhang W, et al. Predictive Modeling for Epidemic Outbreaks: A New Approach and COVID-19 Case Study[J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH. 2020, 37(20500283).

中文标题:一种通过新方法建立的疫情暴发预测模型及新冠疫情案例研究

全文链接: https://doi.org/10.1142/S0217595920500281

 

25.Zhang X, Ma R, Wang L. Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries[J]. CHAOS SOLITONS & FRACTALS. 2020, 135(UNSP 109829).

中文标题:预测主要西方国家新型冠状病毒肺炎暴发的转折点,持续时间和感染率

全文链接: https://doi.org/10.1016/j.chaos.2020.109829

 

26.Shang K, Yang B, Moore J M, et al. Growing networks with communities: A distributive link model[J]. CHAOS. 2020, 30(0411014).

中文标题:具有社团结构的进化网络:一个分布式链接模型

全文链接: https://doi.org/10.1063/5.0007422

 

27.Jia J, Ding J, Liu S, et al. MODELING THE CONTROL OF COVID-19: IMPACT OF POLICY INTERVENTIONS AND METEOROLOGICAL FACTORS[J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS. 2020(23).

中文标题:对新冠肺炎的控制情况建模:政策干预和气象因素的影响

全文链接: https://ejde.math.txstate.edu/Volumes/2020/23/jia.pdf

 

28.Shao N, Zhong M, Yan Y, et al. Dynamic models for Coronavirus Disease 2019 and data analysis[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES. 2020, 43(7): 4943-4949.

中文标题:新型冠状病毒肺炎的动态模型和数据分析

全文链接: https://doi.org/10.1002/mma.6345

 

29.Chen Y, Cheng J, Jiang Y, et al. A time delay dynamic system with external source for the local outbreak of 2019-nCoV[J]. APPLICABLE ANALYSIS.

中文标题:一个用于描述新型冠状病毒局部暴发的具有外部源的时滞动态系统

全文链接: https://doi.org/10.1080/00036811.2020.1732357

 

30.Verma R. China's 'mask diplomacy' to change the COVID-19 narrative in Europe[J]. ASIA EUROPE JOURNAL. 2020, 18(2SI): 205-209.

中文标题:中国意图以“口罩外交”改变在欧洲的新冠肺炎疫情叙事

全文链接: https://doi.org/10.1007/s10308-020-00576-1

 

31.Wang H, Miao L. In this together: China-EU relations in the COVID-19 era[J]. ASIA EUROPE JOURNAL. 2020, 18(2SI): 223-226.

中文标题:在一起:新冠疫情时代的中欧关系

全文链接: https://doi.org/10.1007/s10308-020-00578-z

 

32.Verma R. China's diplomacy and changing the COVID-19 narrative[J]. INTERNATIONAL JOURNAL. (UNSP 0020702020930054).

中文标题:中国外交手段与改变新冠肺炎疫情叙事的研究

全文链接: https://doi.org/10.1177/0020702020930054

 

 

33.Wang X, Wang S, Lan Y, et al. The impact of asymptomatic individuals on the strength of public health interventions to prevent the second outbreak of COVID-19[J]. NONLINEAR DYNAMICS.

中文标题:无症状个体对预防第二次新型冠状病毒肺炎暴发的公共卫生干预措施的影响

全文链接: https://doi.org/10.1007/s11071-020-05736-x

 

34.He S, Peng Y, Sun K. SEIR modeling of the COVID-19 and its dynamics[J]. NONLINEAR DYNAMICS.

中文标题:新型冠状病毒肺炎及其动力学的SEIR模型

全文链接: https://doi.org/10.1007/s11071-020-05743-y

 

35.Cui Z, Chang H, Wang H, et al. Development of a rapid test kit for SARS-CoV-2: an example of product design[J]. BIO-DESIGN AND MANUFACTURING. 2020, 3(2): 83-86.

中文标题:SARS-CoV-2病毒快速测试套件的开发:一项产品设计示例

全文链接: https://doi.org/10.1007/s42242-020-00075-7

 

36.Qiu Y, Chen X, Shi W. Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China[J]. JOURNAL OF POPULATION ECONOMICS.

中文标题:社会与经济因素对新冠肺炎在中国传播的影响

全文链接: https://doi.org/10.1007/s00148-020-00778-2

 

37.Jiang X, Coffee M, Bari A, et al. Towards an Artificial Intelligence Framework for Data-Driven Prediction of Coronavirus Clinical Severity[J]. CMC-COMPUTERS MATERIALS & CONTINUA. 2020, 63(1): 537-551.

中文标题:基于数据预测新冠肺炎患者临床严重程度的一种人工智能框架

全文链接: https://doi.org/10.32604/cmc.2020.010691

 

38.Zhang L, Zhao W, Sun B, et al. How scientific research reacts to international public health emergencies: a global analysis of response patterns[J]. SCIENTOMETRICS.

中文标题:科学研究如何应对国际公共卫生突发事件:响应模式的全球分析

全文链接: https://doi.org/10.1007/s11192-020-03531-4

 

39.Zhong L, Mu L, Li J, et al. Early Prediction of the 2019 Novel Coronavirus Outbreak in the Mainland China Based on Simple Mathematical Model[J]. IEEE ACCESS. 2020, 8: 51761-51769.

中文标题:一项基于简单数学模型的关于中国大陆新型冠状病毒暴发的早期预测

全文链接: https://doi.org/10.1109/ACCESS.2020.2979599

 

40.Fang M, He B, Li L, et al. CT radiomics can help screen the Coronavirus disease 2019 (COVID-19): a preliminary study[J]. SCIENCE CHINA-INFORMATION SCIENCES. 2020, 63(1721037).

中文标题:CT影像组学可帮助筛查新型冠状病毒肺炎:一项初步研究

全文链接: https://doi.org/10.1007/s11432-020-2849-3

 

41.Li B, Li H, Sun Q, et al. Evolutionary game analysis of online collective behaviour with the introduction of the degree of psychological identity[J]. BEHAVIOUR & INFORMATION TECHNOLOGY.

中文标题:引入心理认同度的网络群体行为演化博弈分析

全文链接: https://doi.org/10.1080/0144929X.2020.1772369

 

42.Wu Y, Zhu C, Li Y, et al. NetNCSP: Nonoverlapping closed sequential pattern mining[J]. KNOWLEDGE-BASED SYSTEMS. 2020, 196(105812).

中文标题:基于网树的无重叠闭合序列模式挖掘

全文链接: https://doi.org/10.1016/j.knosys.2020.105812

 

43.Huang C, Wen T, Shi F, et al. Rapid Detection of IgM Antibodies against the SARS-CoV-2 Virus via Colloidal Gold Nanoparticle-Based Lateral-Flow Assay[J]. ACS OMEGA. 2020, 5(21): 12550-12556.

中文标题:使用胶体金纳米粒子侧向层析快速检测SARS-CoV-2病毒的IgM抗体

全文链接: https://doi.org/10.1021/acsomega.0c01554

 

44.Chen Z, Zhang Z, Zhai X, et al. Rapid and Sensitive Detection of anti-SARS-CoV-2 IgG, Using Lanthanide-Doped Nanoparticles-Based Lateral Flow Immunoassay[J]. ANALYTICAL CHEMISTRY. 2020, 92(10): 7226-7231.

中文标题:一种快速、灵敏的SARS-CoV-2病毒IgG抗体检测法:使用基于镧系元素的纳米颗粒的侧流免疫分析法

全文链接: https://doi.org/10.1021/acs.analchem.0c00784

 

45.Govindan K, Mina H, Alavi B. A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)[J]. TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW. 2020, 138(UNSP 101967).

中文标题:基于流行病暴发考虑的医疗供应链需求管理决策支持系统:一项对新型冠状病毒肺炎的案例研究

全文链接: https://doi.org/10.1016/j.tre.2020.101967

 

46.Addo P C, Fang J, Kulbo N B, et al. COVID-19: fear appeal favoring purchase behavior towards personal protective equipment[J]. SERVICE INDUSTRIES JOURNAL. 2020, 40(7-8): 471-490.

中文标题:新冠肺炎:恐惧诉求促进消费者个人防护用品的购买

全文链接: https://doi.org/10.1080/02642069.2020.1751823

 

因学科专业所限,难免出错,敬请批评指正。同时,我们也面向全校师生征集关注的领域和专题。

联系方式:68754258,Email: [email protected]


(图书馆编辑:赖剑菲、姚雪霏、张宁 审核:刘霞、刘颖)

武汉市地震监测中心遭受网络攻击 “黑手”疑来自美国
  【环球时报-环球网报道 记者 袁宏】24日,新浪湖北
湖北药物研发能力迈入全国第一方阵
   去年新增国家1类新药、首仿药等53个 湖北药Hb.Chinanews.Com
湖北省印发重要实施意见及6个配套方案!权威解读
   原标题:湖北省印发重要实施意见及6个配套方案新浪湖北
湖北尚未发现XBB型新冠病毒 流行毒株仍以BA.5.2为主
   原标题:湖北疾控最新提示!   近日,新浪湖北
武汉发布2023年春运方案:预计客流达755万人次
  2023年春运从1月7日开始,至2月15日结束,新浪湖北